Homology modeling and site-directed mutagenesis reveal catalytic key amino acids of 3beta-hydroxysteroid-dehydrogenase/C4-decarboxylase from Arabidopsis.

نویسندگان

  • Alain Rahier
  • Marc Bergdoll
  • Geneviève Génot
  • Florence Bouvier
  • Bilal Camara
چکیده

Sterols become functional only after removal of the two methyl groups at C4 by a membrane-bound multienzyme complex including a 3beta-hydroxysteroid-dehydrogenase/C4-decarboxylase (3betaHSD/D). We recently identified Arabidopsis (Arabidopsis thaliana) 3betaHSD/D as a bifunctional short-chain dehydrogenase/reductase protein. We made use of three-dimensional homology modeling to identify key amino acids involved in 4alpha-carboxy-sterol and NAD binding and catalysis. Key amino acids were subjected to site-directed mutagenesis, and the mutated enzymes were expressed and assayed both in vivo and in vitro in an erg26 yeast strain defective in 3betaHSD/D. We show that tyrosine-159 and lysine-163, which are oriented near the 3beta-hydroxyl group of the substrate in the model, are essential for the 3betaHSD/D activity, consistent with their involvement in the initial dehydrogenation step of the reaction. The essential arginine-326 residue is predicted to form a salt bridge with the 4alpha-carboxyl group of the substrate, suggesting its involvement both in substrate binding and in the decarboxylation step. The essential aspartic acid-39 residue is in close contact with the hydroxyl groups of the adenosine-ribose ring of NAD+, in good agreement with the strong preference of 3betaHSD/D for NAD+. Data obtained with serine-133 mutants suggest close proximity between the serine-133 residue and the C4beta domain of the bound sterol. Based on these data, we propose a tentative mechanism for 3betaHSD/D activity. This study provides, to our knowledge, the first data on the three-dimensional molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthesis pathway with its substrate. The implications of our findings for studying the roles of C4-alkylated sterol precursors in plant development are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of amino acid residues responsible for differences in substrate specificity and inhibitor sensitivity between two human liver dihydrodiol dehydrogenase isoenzymes by site-directed mutagenesis.

Human liver dihydrodiol dehydrogenase isoenzymes (DD1 and DD2), in which only seven amino acid residues are substituted, differ remarkably in specificity for steroidal substrates and inhibitor sensitivity: DD1 shows 20alpha-hydroxysteroid dehydrogenase activity and sensitivity to 1,10-phenanthroline, whereas DD2 oxidizes 3alpha-hydroxysteroids and is highly inhibited by bile acids. In the prese...

متن کامل

Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling

The archaeon Sulfolobus solfataricus P1 carboxylesterase is a thermostable enzyme with a molecular mass of 33.5 kDa belonging to the mammalian hormone-sensitive lipase (HSL) family. In our previous study, we purified the enzyme and suggested the expected amino acids related to its catalysis by chemical modification and a sequence homology search. For further validating these amino acids in this...

متن کامل

A discontinuous DNA glycosylase domain in a family of enzymes that excise 5-methylcytosine

DNA cytosine methylation (5-meC) is a widespread epigenetic mark associated to gene silencing. In plants, DEMETER-LIKE (DML) proteins typified by Arabidopsis REPRESSOR OF SILENCING 1 (ROS1) initiate active DNA demethylation by catalyzing 5-meC excision. DML proteins belong to the HhH-GPD superfamily, the largest and most functionally diverse group of DNA glycosylases, but the molecular properti...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

Comparative anatomy of the aldo-keto reductase superfamily.

The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 149 4  شماره 

صفحات  -

تاریخ انتشار 2009